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ABSTRACT

By utilizing results of Hamiltonian theory and the von Zeipel
method for treating artificial satellite orbits, error bounds are derived
for a general class of orbits with eccentricity less than one. In order
to extend the error bounds for the general axisymmetric problem to time
intervals of the order 1/J2, the known integral of energy is utilized
to calibrate the governing differential equations for the rapidly rotating
phase. The non-singular rapid phase in this analysis is taken to be the
sum of the mean anomaly, argument of periapsis and the right ascension of
the ascending node. A corresponding analysis for the general asymmetric
problem (including the tesseral harmonics) is also given. From the
general error analysis an algorithm is derived for the computation of
the correct initial conditions consistent with the expected accuracy
of the theory. Numerical results verifying the conclusions of the theory

presented in this paper are also given.
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I. INTRODUCTION

The analytical theory of artificial satellite motion has been the
subject of very intensive study since the launching of the first
artificial satellite in 1957. 1In fact, many aspects of the problem
had been studied before that time in connection with the theories of
celestial mechanics. The result of the study has been a very extensive
list of papers offering solutions of many differing forms and techniques
of achieving them. However, with the exception of the work of Kyner
(Ref. 1), no other solution is known to the authors that offers rigorous
error bounds on the position and velocity for a general class of orbits,
e.g., inclined orbits of any eccentricity less than one. Naturally, the
orbits at critical inclination and orbits in resonance with the tesseral
harmonics must be excepted from the general class, It is then a matter
of general interest to derive such error bounds.

From a fundamental point of view, the problem of artificial satel-
lite motion can be classified as a special case of a general class of
non-linear oscillation problems. Non—-linear oscillation problems can
be treated with varying degrees of success by the general averaging
methods developed by Krylov, Bogoliubov and Mitropolskii (i.e., Ref. 2).

For these methods of averaging there exists an associated technique for

establishing bounds on the error build-up in a specified time between the

exact and the approximate solutions (first order or higher order). Now,
the method of application of the technique of averaging to the problem
of artificial satellite motion depends rather heavily on the particular
choice of variables employed. In the case of Kiner's work, averaging

could be applied directly; in most other approaches to the problem Lhe
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use of averaging is more or less disquised.

One of the most widely used perturbation methods in treating
artificial satellite orbits has been the method of von Zeipel as adopted
by Brouwer (Ref. 3) and Kozai (Ref. 4). This method is one of successive
canonical transformations and is necessarily carried out in the variables
of Delaunay (L,G,H,£Z,g,h). With a slight change of variables and a
choice of a different intermediary orbit, the same method was applied
by Garfinkel (Refs. 5,6). Furthermore, it has been shown (Refs. 7,8)
that the von Zeipel method of canonical transformations is a particular
form of the method of averaging. Hence, by drawing on the equivalence
to averaging, rigorous error bounds could be established for the
Delaunay variables directly. Unfortunately, bounds obtainable in this
way for the Delaunay variables £ and g are unsatisfactory for very
small eccentricity (i.e., e' < J2 where J2 is the oblateness
parameter of 0(10-3)) due to a singularity at zero eccentricity in the
short period terms. A further drawback is the singularity at zero
inclination. Since no singularities exist in the coordinates for zero
eccentricity and/or inclination, one would expect that these objections
to the bounds would not exist for a suitable choice of variables. The
error bounds derived by such direct application of differential equation
theory turn out to be unsatisfactory for large time intervals i.e., time
intervals of the order l/J2 . Since one of the problems of interest in
applying closed-form orbit theories is orbit prediction over long periods
of time, the error theory must be modified. The modification is a more

involved problem and a separate treatment is presented here.

In this report, the problem is analyzed in canonical variables;




the three sets of interest are those due to Delaunay, Hill and Poincare.
Of these variables, the Poincare set is non-singular for both zero
eccentricity and inclination, the Hill set singular for zero inclination
;nd the Delaunay set singular for both zero inclination and eccentricity.
The advantages of the Hill set are the simple forms of the in-plane
coordinate perturbations which are obtained directly from known
generating functions. It was shown by Izsak (Ref. 9) that, to first
order in the oblateness coefficient J2, the in-plane position and
velocity components of a satellite are obtainable by converting via
Keplerian formulae from Brouwer's averaged Delaunay variables (L',G',H',
£',g8') to corresponding "averaged' position and velocity and then
superimposing the short-period fluctuations. These short-period fluctu-
ations were shown to be obtainable by rewriting Brouwer's short-period
generating function S1 in terms of the Hill variables and taking
appropriate partial derivatives. These short-period fluctuations are
well-behaved (unlike those in £,g) when eccentricity goes to zero.
Recent investigations by Vagners (Ref. 10) have obtained in the same
manner first order long—-period fluctuations in the Hill variables by
rewriting Brouwer's long-period generating function S: relating (L",G"
H',¢2",g",h") to (',G',H',Z',g',h'), including general formulas for
the effects of any zonal harmonic. Analogous 'medium-period" (i.e.,

daily) fluctuations in the Hill variables were obtained in a general

form for the effects of the tesseral and sectorial harmonics. Since the

analysis given by Vagners was applicable to any set of canonical variables,

then similar results could readily be obtained for the Poincare/variables

Utilizing the results of Izsak and Vagners, an analysis is carried
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out in this report which parallels every canonical tranformation of

the Delaunay variables by an appropriate canonical transformation of
some general set of canonical variables including the removal of second
order short-period terms from the Hamiltonian. In this way, rigorous
error bounds on the first-order solution are established which are
independent of the eccentricity for Hill variables and independent of
eccentricity and inclination for the Poincare/ variables (as long as e
is not too close to one). As is shown, these bounds are unsatisfactory
for long time intervals and another method is offered.

A discussion is presented of the various terms arising in the error
bound. Particular attention is focused on the question of initial
condition errors; this question is of interest when computing by means
of a "closed-form'" satellite theory a satellite's ephemeris from some
given initial position and velocity vectors. In view of the extensive
comparison studies of different orbit theories conducted by Arsenault,
Enright and Purcell (Ref. 11), wherein the problem of initialization »
plays such an important role, this question assumes considerable
importance. An energy method is then given for greatly decreasing the
primary in~track position error build-up due to initial conditions and
some typical results are quoted. The algorithm of computing the correct
initial conditions arises directly from the extended error bound theory.

The authors wish to acknowledge the contribution of Small (Ref. 12),
who first utilized the energy method in reducing initialization errors

in his solution to the problem of satellite motion about an oblate planet.




II. GENERAL BOUNDS ON SATELLITE MOTION

Before proceeding to more specific treatment of the error problem,
some general statements concerning the a priori bounds on the motion may
be made, First, one can consider the motion of a satellite in a general
axi-symmetric gravitational field for which two integrals of the motion

are known, If the potential field is represented by

© N
R
V = —% 1 - Z JN (-r—®> PN(sin B} = - [%(r) + Uy (r,B)] (II-1)
N=2

where £ 1is the latitude, R@ the equatorial radius, p the gravita-
tional constant, r the radius and JN numerical coefficients, then
it can readily be shown that the total energy and the polar component
of the angular momentum are constants of the motion. The two exact
integrals may be written in the form

1
=+

T

U (rp) =k (11-2)

1

hY]

and H = v[;a(l - €2) cos i = k2 (1I1-3)

where a 1is the semi-major axis of the orbit, e the eccentricity, i

the orbital inclination and kl k2 are constants.

The two integrals (II-2) and (I1-3) imply that if k1 and k2

are given, then the motion of the satellite is confined to a region
bounded by a "zero velocity" surface (Ref. 13). With initial conditions

specifying k1 and k2 one can write the a priori bounds in the form

0 < 81(k1,k2,e) <r< 62(k1,k ,y€) (11-4)

2

where € A Jz, k) >0, k, > 0 and JN/JS are assumed values of 0(1).




General bounds of this type are developed by Poritsky (Ref. 14) and
given for € =0 by Kyner (Ref. 1). Here the explicit forms of 61
and 62 are not of direct interest.

In the more general problem of a longitude dependent potential one
no longer has the two integrals (II-2) and (II-3). Such a potential
arises when one includes the tesseral harmonics of the Earth's field in
the general satellite problem. However, by considering a rotating coor-
dinate system fixed in the primary, one can readily determine the Jacobi
integral of the system. In this case one specifies only the upper bound
by the zero-velocity surface.

One assumes then that a priori bounds on the state vector x are

known, namely, if the initial state vector x(0) is in a set D, then
|x| < c(x(0), e (11-5)

where the soclution depends on a small parameter € . Since for near-
earth satellites one is concerned with elliptical orbits, the set D
will be specified by the requirement of negative energy and a non-zero
initial value of the angular momentum., If the state vector chosen for
the description of the motion is some canonical set (q,p), then the

equations of motion take the form

(?) =x =0 Xu (x,€) (11-6)
p o X

where ¥ is the Hamiltonian of the problem

0 I
@ = s .
° <-I 0> the canonical matrix

~ denotes the partials of ¥ with respect to X
and the super tilda denotes the transpose of the
vector x .




Then, since ﬂZ; is continuous and satisfies a Lipschitz condition
locally in x 1in some bounded region ® (then) a solution for all t
exists as a consequence of (II-5).

Note that implicit in (II-5) is also a restriction on how close the
energy and the angular momentum may be to zero. For the general bounds
to hold, these initial values must be sufficiently different from zero
so that the perturbations, of order € in the satellite problem, do

not cause the state vector x to become arbitrarily large.




111, THE SECOND-ORDER HAMILTONIAN

Inherent in a specific discussion of error bounds is a knowledge of
the characteristics of the analytical method used in the fundamental
solution and a knowledge of the behavior of various functions arising
therein. - The method utilized in the following analysis is the von Zeipel
method and the system analyzed is a Hamiltonian system. For a brief
review of the von Zeipel procedure, the reader is referred to Ref. 10;
the specific details of the orbit problem solution may be found in
Refs. 3 and 4,

It turns out to be convenient to introduce the three sets of
canonical variables due to Delaunay, Hill and Poincare . (Recall that
the original solution of Brouwer was carried out in Delaunay variables.)
These sets of variables are defined in the following manner: The

Delaunay variables, denoted by y, are given as

(I11-1)

=~ B A RS

where is the mean anomaly

w the argument of pericenter

{ the right ascension of the ascending node

£
g
h
L =Vpa
G
H

]

Vua( - e2)

G cos i




Denoting the Hill variables by 2z, one finds

.-r~
u
z = h (111-2)
R
G
| H ]
where u the central angle or argument of latitude
R = r the radial velocity
And, finally, the Poincare/ variables, denoted by x, are
x:[q]: ")\'-1
p Ny
g
L (111-3)
§1
3
| "2
with »=4+g+h L=L
3 }
ny = [2¢L - G) ]2 cos (g + h) E, = [2(L - G)]% sin (g + h) (I11-4)
} }
Ny = [2(G - H) ]2 cos h £, = [2(G - H)]? sin h

Note that equations (I11I-4) give the transformation from Delaunay to
|
Poincare/, and that no singularities are introduced in this transformation.

The inverse transformation is given by

1
£ =) - tan t2 L=1L
ly
2 2
1 & 1§ By + 1y
g = tan 121 tan 122 G=L- - (111-5)
Ny My
3 éz + nz
- 2 2
h = tan 1 —2- H=G -
Ny 2



In the transformation (III-5), the equations for the momenta L,G,H
exhibit no singularities, whereas in the coordinates [{,g,h singularities
will arise for zero eccentricity (nl = 0) and for zero inclination
(nz = 0). This feature of the transformation will be important in later
analysis.

If one denotes a general canonical set of variables by w, then

the equations of motion take the form (see Eq. (II-6)):
w=0

3 (w,€) (111-6)

with w

It
Q

¢ the generalized coordinates

B B the associated momenta
where for the artificial Earth satellite problem the Hamiltonian is
written as

2
Kw,e) == —5— + ¢ 1D @ + 21w (111-7)
2L (w)

The oblateness coefficient J2 has been taken as the small parameter ¢
for convenience. Since all of the higher harmonics in the expansion for
the Earth's field are of at least O(Jg), one can represent their
contribution as an €2 term (Eq. (II-4)).

Now, apply a stationary canonical transformation to define a new

set of variables w':

(&) )
a=a - ¢ D'é' @', ~ ¢ Dé' @',
(I11-8)
(1) 2 (2)
B =B + ¢ i)a B, + ¢ I)a B',a
. (i)
which has been truncated with the second order terms. The D are the

"generating functions" of the canonical transformation., The new

10




Hamiltonian is then

9 2 (¢} (1)
3(:'(w',e)=3€(w,e)=-“———+elffﬁ(1)+*-*—<L Da, =L , D~ >} +

i 2L2 L3 6' al al Bl
1) @ 1 @ 2 (2) 2)
2 2) b
+ € I JL‘ +< 6" D JCa, DE' > + 3 <LB' Do, = L DE' >
2
2 Q) (1) 2 (@) (0 1 ¢D)
_3p -~ - - e (- - - ~
2L4 <LB' Dal Lal DB' > + L3 < LB' D ala' D B' + La' Dslal B' >
2 (69 1 (1)
1 D
1l p- - 3., .,
+2 L3 <Da' ’ DB' > L'é.B' Lé,a, &, \'l" € f(W ,€)
9 (1)
I'ala' I’&tal - é' (111—9)

All functions in Eq. (III-9) are to be evaluated at w'. Choose

D(l) (2)

@,B') and D (c,8') so that ¥ '(w') contains no short period

terms except in f(w',¢). This requirement is defined by

3
5—%.— [ w',e) - fWw',e)] =0 (111-10)
‘ with £' the Delaunay variable conjugate to L' = L(w') . The Poisson
bracket
[A,B] = AB.B'&' - AO!'BE' = AW'(DOB\;' (III—].].)

is easily shown to be invariant under a canonical transformation. In

particular
5o @

] = S (111-12)

(1)
D ol!

(v,

then if one writes

5o (1) w') = ) ') + £ w")

with Ec(i) w') = av ¢ (D (w")
. T

11



6D

one chooses 0 (w') such that
2 @D ~
p_o? - - 3 (I11-13)
L3 kY
(@)

This defines D (w') uniquely up to an additive function of the

Delaunay variables other than £' ., It is then convenient to choose

o) g1

to be identical with Brouwer's (L',G',H,4£,g,-~) expressed

1)

S(l)(a,B'). Note that the function S is non-singular for zero

as
eccentricity and/or inclination and is a function (as Brouwer writes it)
of both L,G explicitly and implicitly through e and £, the true
anomaly. When computing the required partial derivatives for £ and g
short period variations, the singularity for zero eccentricity, for

example, arises in the following way

as(l) B as(l) G,z aS(1)
oL~ \ or T\ T3 S
expl. e'L
(I11I-14)
ds(l) ) dS(l) ) G' ds(1)
oGt oG! 'L’2 oe'
expl. €

1 .
As shown in Ref. 10, no o terms arise in the case of the Hill
variables; however, zero inclination singularities still exist. That
no singularities occur for the Poincaré variables can readily be

demonstrated. The argument is given for the variable ) ; similar

@D

arguments apply to the other variables. The function S is given

eN s

explicitly as (e',f',g',G',H') so depends on L' also

t

through e and f' . According to the von Zeipel procedure the first

order short-period variations of ) are given by

12




aS(1)
bxl =577 (I11-15)

which then can be written as (dropping the primes for convenience)

6D

(1) Q) (&9 N (1)
_9s (s de 98 7 | 9G 98 SH 58
5>\'1 - oL - oL expl + oL Oe + SL ~ 3G + SL SH (111-16)
with
(1) (D (D)
68 _ as a _2 ds .
oe Oe expl * (; - > Y t
n=Q 22
So
osH (L (1) (D)
_Qge |oS a _ =-2) os o Js 3s
BXI"aL Se (r n ) ST sin f -+< SG =5
expl. expl.
2 3
where 52 . nz
e = { 1 - o221 (111-17a)
12 2
then 5
de 1l - e P) (- 1)
oL ~ eL [ 1-e - 1] __ILIH;:__
oy - DO+ 1) e
B eL(i, + 1) T T IL(h+ D (I1I1-17b)

The derivatives with respect to e and f explicitly introduce no
singularities and neither do the last two terms of Eq. (III-17a). Thus
6x1 is well~behaved as e(and i) —» 0 .

Next, one can show that the second order long-period Hamiltonian is
independent of the particular canonical variables used and, furthermore,

o )

that the second order generating function is non-singular for

)

zero eccentricity and/or inclination. Recall that the function 9D

is chosen so as to cancel all second order short-period terms of the

13




Hamiltonian. In order to obtain the desired results, note that

) 1 (@
3¢ N - _ 1) (1) _
x S, &Ca, SB' _[Jé , S :l (111-18)

is an invariant for canonical variables. Furthermore,

2) 2) 3 p (2)
L ,D~, =L, D, = = (I11-19)
B' al al Bl aﬂl
and D) W\ fo 1y 2
(L,S~, - L ,S~, ) ==GE ) (111-20)
p' a a'p

One can rewrite (from Eq. (III-9))

(CORENN Y 1 @

Lﬁ'S&'a' Sév + LOC'SE'OC'SB'

as follows (where «,B are understood to be the primed variables)

1 @ (1 (@ 1 )y @ 1 1)y Q)
1 L 9 L Ch s(l)s(l) + z L S(l) sfl) i L s(l)s(l) =
2\ Poz “ap a "B 2 gap a 2 "oBg "a <

S5 )] &) O ) N 1) (1) 1)
—_— ~ — ~ S~
‘ ! <;BS& - LSy >] S5+ 3 [ 5\ LS5 5t

L[ @ (1) o W (1) > eb)
= i~ v - ~ = = |8y Lx = Sx L~ S~ =
"2 <Sa Mo~ % o) % T \a BT B G/ T4

(111-21)
1) (1) (1) )
19 1 ['@(1) (1)] _19 h
"2‘57<Sasé>='g“'s 252 \%a % )7
(@) 1) o) N 49 (@) S(1)
1 - o = L(s: L. - 8¢ L ~
' §<S& o~ % M) 5 T z\a me T B o) T
14




then also

l( 1) (1)> 1)
B\S, » -S4 LEs L Sx =
(1)
e o/ \0 S
(111-22)
( 1) (1)) 6)) (1)
= 3 Sy T SB S LBB - sE Léa
(1) 69
% e T %

Thus it can be seen that Eq. (III-22) cancels the last two terms of
Eq. (111-21). The second order part of the Hamiltonian (III-9)

consequently is given by

2 2) ' 2 2 2 A
~ 1 1
2 | @ +[3C(1>’S(1>] L0 e Lz(:,c(l)> o 3[3(5 ) @
: L' vl 2L'
5 1 @
-3 Vil sa' Sé' (I111-23)
2 (2)
The only term of Eq. (III-23) apart from _ 92’ that depends on the
L' 5 L @
particular canonical variables used is - 3 SiT Sa, SE' , which is
2
necessarily short period, and D( ) , of course, is chosen so that the
2 (2)
term iLg DE' cancels all short-period terms.

Ll
From this invariance property of the terms in Eq. (III-23) one

deduces that the difference between the second order generating

D(2)

functions of two different sets of canonical variables, such as

any arbitrary set w and the Delaunay set y for example, will be given

by
3 (1) '3 (1)
]
D(Z) - S(2) = LLE Sa, Sgﬁ - E—E SQ' S§ + arbitrary long period term
2 24 (111-24)

15




Equation (III-24) gives a convenient algorithm for computing the
. A 0)) . .
generating function 9o for any set of canonical variables., In
order to assure that all of the functions arising in the error bound
2

determination remain bounded, one must establish that I)( ) contains
no singularities. This may be done utilizing the known results of
Izsak (Ref. 9), Brouwer (Ref. 3) and Kozai (Ref. 4).

In Kozai's paper, the expression given for the Jg component of

the function S(Z)

shows the factor 1/e for the trigonometric
arguments sin f, sin (f + 2g), sin (3f + 2g), sin (3f + 4g) and

sin (5f + 4g). The appearance of this factor is unnecessary and a
suitable rearrangement of terms eliminates it. Such rearrangement

will be shown explicitly here for the coefficient of sin f; the other

terms can be treated similarly. The coefficient of sin £ as given by

Kozai is (omitting a nonsingular multiplying factor):

i [9(11 - 30 92 + 27 94) - 8n2(17 - 38 92 + 11 94) -4 713(1 -3 92)2 X

(3 + nz) + n4(53 - 130 92 - 11 94)] (I11-25)
where 0 = % = cos i

Equation (III-25) can be rewritten as

é- [99 - 270 62 + 243 94 - 136 + 304 92 - 88 94 - 4n3(1 -3 92)2(3 + nz)

4
+ 53 - 130 92 -1 6 - 2e2(121 - 282 92 + 33 94) + e4(53 - 13 92 - 11 Q?J

2 4
or dropping the e and e terms and combining:

5

2
a1 - 3 6%) [

3
p 4 - 31 -1

]

16




Now, this can be rewritten as follows:

4

4 - 3n2 - n? _ (1 - 1)

3 2
. s + 17 + 417 + 47 + 4]

[n

A -nd +n) [n4 + q3 + 4n2 + 4n + 4]

e(l + 1)
e 4 3 2
=T+ 7 + 17 + 417 + 41 + 4] (111-26)
which remains bounded as e -0 . In a similar manner the other

expressions given by Kozai (for higher order harmonics JN) may be
rearranged and thus it can be shown that S(z) contains no 1/e factors.
Of the terms on the right-hand side of Eq. (III-24), the first is

known to be bounded (III-17 a,b), the second can be shown to be bounded
by the above technique of rearranging.

The (new) canonical variables w' satisfy the differential

equations
w' =0 KL (w',e) (111-27)
o w
where one can write the Hamiltonian in the form

2 ) -—
X' (w',e) = - —B 4 3C(l)(w') + ezx(z)(w') + ess(w',e) (I11-28)

2L'2(w')

an analytic function of the variables w' and the small parameter ¢
Define next a transformation (canonical) to the "secular" variables

w'"' by the truncated expressions

a € S'II(B a)
?
B

Q
]

(I11-29)

1" 1 * " 1
B B' + € s&,(B ,a')

17




whereJr

S* is chosen so as to cancel the long-period part of the
Hamiltonian (except near critical inclination). Then S%n and Sg,

give the first order long-period variations of ¢ and p i.e.:

1 * 1 *
el S~ L S~ ' = IT1I-30
27 j B" dg o J OC' dg 0 ( )

The governing differential equations for w' become then

b L B " " 3 " -
w - q)o [JCW" (W ,€) + € wwn(w ,E)] (111‘31)

and the solution can be written in the form

N ¢)) 9 2)
Q= o' - ES’BH (fj",OC') - ESB' (B',CZ) - L [} (B' ia)

(L 9 (2)
B =p" + esg, @e",a") + €Sy (B',0) + ¢ D (8",
(I11-32)
where a' =o' - €S;n ®",a")
t AN % ] '
B o= ﬁ + GSa' (B , & )

In the definitions of what constituted long-period and/or short-period
variations, the Delaunay variables were used explicitly (see Eqs. (I1I-30)
and (III-10)). 1If the von Zeipel technique is carried out for the
Delaunay variables, then it is found that P"( = B") are constants, the

"secular' Hamiltonian is a function of P" only and the coordinates

Q" (= ") have constant rates. If one is dealing in any other canonical
variables, for example the Poincare’ set x, then x'" are defined to be
the same functions of y" as x are of y.

1.

The function s* can be chosen to be identical to Brouwer's long-
period generating function considered as a function of w (see Ref. 10) .

18




In this section it has been established that the generating functions of
transformations (III-8) and (I111-29) and their partial derivatives are

bounded. Note that Eqs. (III-8) constitute transcendental equations for

w which may be written in the form

Q' = + ¢ EI(B',Q)
(I11I-33)
B' = p + € &2(6',0&)
From the general bounds on w one has
lel < B (111-34)

The functions £i(B',a) depend on trigonometric functions of « .
Suppose now that f 1is bounded within some region R , and specifically,
that £ 1is bounded away from the boundary of R by at least c€A/1-¢K,

Where A and K are defined by

IQZ(B,OO | <A
(II11I-35)

and Isz(ai,oo - ﬁz(sj,a)l <K Iai - bjl for all p;,B, in R

Assume further that €K < 1 ; this in effect imposes a restriction on
how close the energy and angular momentum may be to zero. Now assume the

following iterative algorithm for computing the primed variables g'

t — d )
A (I11-36)
. L
with Bo = P
then iﬁi - Bl < €A
lgr - Bil < eKIBi - 8|l , since ai is also in R
(111-37)

IB' - B'l < eKIBé - Bil , Since Bé is also in R

I oo

Bryl < exlgy ) - Brez|
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and lBé
s
le!
or '
6!

Bl

Bl

Bl

Bl

IN

Taking the limit

ley = b1

ey - 8l

53 = 8l
n-1

cA

j=

n-1
25 (k)
J=0

z (ek)J

-5l <

5 = Bl <

|62

lim |B; - BI < €A 1lim

n— o

n —> o

- sl + €K

n-1

Jj=0

lim [g' - p| < eA/1-¢K
n -»w n

1 - ﬁl(l + €K +

(eK)J

(x)?)

(I11-38)

(I111-39)

A similar argument can be applied to the long-period transformation (III-

29) to deduce that

6ll

consequence of the above,

Also, note that the iterative procedure converges,

so that as

n- ow, |g

one has

will remain (sufficiently) close to

a' - al = cl&l(ﬁ',a)l < eA)

n+

lg!

n+

20

, D
1 Bnl < €A(eK)

L - b;l —0 if €K <1

i.e.

B'

As a

(111-40)

(I111-41)




IV. ERROR BOUNDS FOR THE AXISYMMETRIC PROBLEM

All of the information necessary to derive formal error bounds has
been given in Sections II and I1I. One can proceed then in a straight-
forward manner to derive the bounds utilizing known theorems from the
theory of differential equations. However, it turns out that because of
the nature of the differential equations, the bounds obtainable in this
manner prove to be unsatisfactory for time intervals of the order of
1/e¢ . This fact is a natural consequence of the existence of a rapidly
rotating phase in the governing system of differential equations;
however, since only one such phase appears in the case of satellite motion,
one can circumvent the difficulty by appealing to a known integral of the
motion. In this section the conventional method of error analysis will
be presented first and then the extension to the large time intervals

will be given for the problem with an axisymmetric potential.
A. BOUNDS FOR SMALL TIME INTERVALS

In order to simplify the following presentation, some new notation
will be introduced at this point. If A and B denote n-dimensional
vectors then IA-BI will denote the matrix of absolute values of the

component differences of A and B i.e.:

|a-B| & -lAl-B (Iv-1)

1

lAz'Bz

LIAn—BnI-
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The governing differential equations for the "secular' variables were
given as (Eq. (III-31))

w'o= . e%— (s¢" ", e) + esw(w",e)] (I1v-2)

ow'

from which the approximate state vector wx is defined by

_ 6 F7e 1l 1"
Wy = ®O o JC (wA,e
Ya
(IV-3)

" _ 1"
wA(O) = w ' (0)
For convenience, Eqs. (IV-2) and (IV-3) can be rewritten in the form

‘;]n A(w",e) + EBY(W",€)

(1v-4)

.
1l

A = A (WA, €)

Since the functions —2— 4¢" and -°— " satisfy a Lipschitz

d\;" a";u
condition on the domain of definition of w(t), it follows that

n‘ A\

| A W', e) - A(wx,e)l < k|w" - W

km" (1vV-5)
"

where k is an n X n matrix if m , the matrix of absolute values of

1

the component differences of w' - Wi

is n X 1 . The particular form
of Eq. (IV-5) was chosen since a vector function, say A (w'"), satisfies
a Lipschitz condition on w" if and only if each of its components
Ai(w",t) does. Since the constants may be different, the use of the
matrix of Lipschitz constants k can afford a more precise bound than

that usually provided by the norm [|w'" = WX“ .

As a consequence of (IV-5) one can immediately write

N " I I TS (1V-6)
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where from a priori bounds on w(t)

¥, e)| < w© (IV-7)

Hence

< eWw (1v-8)

which is readily integrated to give

3. -1
m" < m'"(0) exp kt + ¢ Wk = [exp kt ~ I]

A (1v-9)
0<t<T,t 2o
== o
However, since it was assumed that WZ(O) = w"(0), the initial error
m"(0) =0 and
" " 17" 3 -1
m' = |w' - w| <€ Wk © [exp kt - I] (IV-10)

At this point, several difficulties of (IV-10) can be pointed out.
The bounds (IV-10) prove to be unsatisfactory for Delaunay variables for

small eccentricity and/or inclination since k contains the factors L

and . If w is taken to be the Hill set =z, the zero eccentric-

sin i
ity difficulty is removed. Although the zero inclination singularity
remains, for many purposes the Hill variables are a convenient set to use
due to the relatively simple expressions for the periodic variations of
the in-plane coordinates (see Vagners, Ref. 10). Taking w to be the
Poincare’ set x, satisfactory behavior is assured for both zero eccentric-
ity and inclination. A much more serious difficulty occurs if one wishes

to examine the bounds for time intervals of the order 1/¢ . Expansion

of (IV-10) yields, for "small" time intervals

1 3 3 2 KT
e3Wk [exp kt - I]=¢ Wt + e W 22 :;-37—— (IV-11)
J=2
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However, for time intervals of order 1/¢ , the bound (IV-10) becomes
very large i.e., behaves like exp 1/¢ .

Assuming now that m'" is at most O0(e)(i.e., bound (IV-10) is
satisfactory) then one can complete the analysis by including the periodic
terms. If this is done, the total approximate solution of interest here
is written as

"

LN + €Y(WA) (1v-12)

with Y(WX) giving the first order periodic parts of w as defined by
eqs. (III-8) and (III-29) with the generating functions considered as
functions of the double primed variables. Equations (III-32) can be

written in the form

w=vw'+ er@w") + ezg(w",e) (Iv-13)
then 0
lw -w | = [w" + erw") + LW, e) - wx - €T(WX)| <
(IV-14)
lw'" - WXI + ely ") - Y(wX)I v Elee", ol
Since e|yw") - Y(WX)’ gives the error in the first order periodic

terms of the solution and m" is 0(e), then the term contributes error

of second order. Thus the effect of the last two terms of (IV-14) can be
2 . .

combined into one second order term ¢ Z to account for all periodic

errors of the solution. The error bound for ''small" time intervals,

assuming exact initial conditions, assumes the form

w-w | < es’w{1 [exp kt - I] + 3z (1v-15)
or, effectively,
eSWt + ezz (1v-16)
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The difficulty of the above bounds for t ~ 1/e is a direct
consequence of the existence of a rapidly rotating phase in the dynamical
system. In the treatment of systems with rapidly rotating phases by the
method of averaging, the governing equations for these phases are
considered separately. The general result obtained then is that the error
is 0(¢) for t ~ 1/¢ rather than 0(62) as one would expect from the
truncations performed i.e., truncation of 0(62) periodic and 0(63)
secular terms. In the following, such separation will be effected and,
by appealing to known integrals, the bounds will be derived for all

2
variables to 0(e) for t ~ 1l/¢

B. EXTENDED TIME ERROR BOUNDS

The following analysis will be carried out for the Poincare’ variables
explicitly utilizing known results for the Delaunay variables and their
rates. The secular Hamiltonian was defined from the von Zeipel procedure
as being a function of the Delaunay momenta P" only (to second order),

. . / . .
hence in the Poincare variables one writes

— 2 ——
1" 2
£ (x",e) = - —&—-2 + ¢ %€ (1)(x ) + €K @) " - &3 p(x",e) (1V=-17)
2L"
452
o R 1
where ge () = © 3 -1 , H and G functions of x"
4L"3G"3 G"z

@) ; ** . .
(Eq. (III-5)) and & is F of Brouwer considered as a function
a @)

of x" . (Explicit expressions for in terms of Hill variables

for any J may be found in Ref. 10, which could then be transformed to
n
Poincare/variables if necessary.) Equation (IV-17) can be rewritten more

conveniently as

2
K" (x",¢) = - _}1_.5. + ¢ F(x",e) - €3cp(x",€) (IV-18)
2L"
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where

FG&",e) = 51<L",n'1'2 + g;z,ngz + 552,e> (1V-19)

The equations for the Poincare/variable rates become

. 2
ToEo e Sy 96,0 - ol ] (1v-20)
L"

T 3 " e
L" = ¢ ﬁ%% (x ,e¢) since “3(1) and 01(2) do not

o)
contain A" and
‘e a 1! 2 1"
xp = €0 — [F(x",e) = px,€)] (1v-21)
ox"
R
with
X, = [ o ] ¢ a 4 X 4 matrix
R- | T N .
Mg
1"t
@1
1]
L. gz -

1

The approximate variables XA are defined by Eqs. (IV-20) and (IV-21)

with ¢(x",€) set equal to zero and xX(O) = x"(0). Consider first the

differential equations for ng and g; :

T.]" -« l" 5‘(x",e) _ €3 gCiL'
1 SI3 3t
1 1
(1v-22)
wo_ _ 0 " 3 99
§1~ egﬁrlrf}(x,e)+€ 571'1'

Recall that ¢(x",¢) 1is given by Eq. (IV-19) so that with

-
1 omi? + &1

N
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a bounded quantity, one obtains

“n —- n 3 0
- T]1 - engl € " ®
1
(Iv-23)
." 11"t 3 a
§1 = equl + € aﬂ; o)
Hence
1d "2 2] _ 3 nw 9 "
zat [+ ] =< 158 S%% " 3?% (1v-24)
The approximate solution XX of interest is given by ¢ = 0, thus from
the boundedness of ¢ (and its partial derivatives)
"2 " 2 "2 1" 2 - "2 "2 3
l(ﬂl = Ta ) + (;1 €4 ) l=1a (gl + 1 )I < €Mt (IV-25)

Here, as well as in the following discussion, the extended time interval

will be taken as t ~ 1/¢ so that

| & (&;2 + nzz) | < esz (1V-26)

The reader may prefer to think of the time interval as defined by

is taken to be the (suitable) mean motion. For

nt ~ 1/¢ where n

mathematical convenience, the definition t ~ 1/€¢ will be used.

Now, rewrite Eqs. (IV-23) as a single complex equation (j o Vv -1):

1} .o . " R {1 3 5 . a
EY + 3Ny = JeN, (6] + gn)) + ¢ gﬁg - 5%: (1v-27)

and the approximate equations as
(1v-28)

since
"2 "2 gllz + nz s L" , €)




Difference Egqs, (IV-27) and (IV-28) to get

) AR L " Lo . " X " 3| o o s o]
Agl + JAnl = JeANl(él + Jnl) + JeNlA(Agl + JAnl) + € ﬁ;— J 5%17

(1v-29)
From Eq., (IV-26):
2 2 2
— - N 1" "
e L TN M1A<§'1 T ) =<
and (IV-29) thus becomes, with the aid of an integrating factor,
d " . " ",jEN t
_— A
| 57 @) + smpe™ 18" <
(1v-30)
3 =jeN_ .t 5 ) . 1 1
- A - -
el 5%'1' J a_cga'lTJ’JMzgl Myny |

Then, since the right hand side of (IV-30) is bounded, it follows that

—jeN. t 3
[ e + 3mDe JNAT < e Mt = €2M3 t ~ 1/¢ (1V-31)
but e J¢ lAt| =1 so
e + 3o"| < €M (1V-32)
1 1l -~ 3’
From similar arguments, it follows that for g; and ﬂ;
(26" + 5] < M, t ~ 1/¢ (1V-33)
2 2 = 4
Also, from the differential Eq. (IV-20)
1" 1 3 d 3 2
- = = I1V-34
L - L o= e fg%,dtlgeMst €M, ( )

The remaining coordinate )" causes some difficulty, since with

L" - LX known to 0(62), a straightforward analysis of the

"
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equation gives I\ - xXI only to 0(¢) for t ~ 1/¢ ., 1In order to
obtain bounds for )" consistent with those of the other coordinates,
one must appeal to the knowledge of an exact integral for the axi-
symmetric problem, In effect, one can re-define the mean motion as

introduced by Brouwer (Ref, 3), who wrote

n & B (1V-35)
and hence, with £, and /, functions of L',G",H only
.'l 2 3
£" = no[l +eb +e ,22] + 0(e™) (1v-36)

Recall that )" was defined by Eq. (IV-20), which in a more explicit

form is given by

2 3}1 R 1 2 "
: b - H
o= l—€§'kL"1 € S \=r -1-2 = +€25 _63_52"_6
Lv|3 1 4G"4 G G 2 oL
(1v=-37)
where 2 2
M R@ H" 2
kl = —5 (3 <Err) - 1> with G" = G"(x") and H" = H"(x")
2G"
L'3 aGi(Z) b ded tit
= — a
62 ) —Sir—— , a bounded quantity
o
2
A * 2L" 2
Define now a new constant a by (with & ==—-— ] ®
i

2

and a new "mean motion" by
3/2

1

= 2

o " *

(a ) = E_§ [1 - ek, L 1. 2a" 63@1]3/2 (Iv-39)
L"

[

A
n =y
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or expanding

2
~ o8 3 -1 2 3 2 3 - 3 *
n=—=ll1-c3 le" € ®R* 4 ¢ 3 kiL" 2 4 e @l(x",e) (1V-40)
L
Thus
2
2 3|J. R 1" 2 1
. ~ H H * -
A =0 - ¢ o @ S5\ =m -1-2 =] - €5, + Se*-3 k2L' 2(l -
Ln3 aG" 4 G G 2 2 8 1
(1V-41)

Again, the approximate XX is defined by (IV-41) with éﬂ# = 0 and

oL

@I =0 . From the exact known integral, H' = H in Eq. (IV-41) and from

the definition of G'":

'12 "2
1 '

2

then from Eqs. (IV-32) and (IV-34)

l¢" - 6,| < e2M6 t ~ 1/¢

so that finally

"

2
1"
MoT Ml Setn, - 1/e

(Iv-42)

(IV-43)

(IV-44)

If one is interested in orbits with non-zero eccentricity and/or

inclination (i.e., e >> €, sin i >> ¢) then the above analysis can be

carried out analogously for the Delaunay and/or Hill variables. In

particular, for the Delaunay variables, the rapid phase is £" and an

equation similar to (IV-41) (but somewhat simpler in form) results for 2".

Due to choice of g and h as the other two coordinates, the € term

of (IV-41) is found to disappear. (Of course, the functions 52,GF* and

/ .
@ are different than for the Poincare variables).
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C. THE INITIALIZATION PROBLEM

At this point the relevance of the above results to the so-called
initialization problem may be noted. The two primary uses of an analytic
(artificial satellite) orbit theory are orbit determination by fitting
to observational data and orbit prediction from some initial state vector.
In the case of orbit determination, the mean (double primed) variables
are obtained to high accuracy by fitting to observational data. This
accuracy depends on the number and quality of the data points. In this
application, the question of initial value errors does not arise.

The initialization problem may be defined as follows: given some
initial radius and velocity vectors, compute a satellite ephemeris for
some extended time interval via an analytic theory. The initial radius
and velocity, and hence the instantaneous elements, are assumed to be
known exactly. Analytic theories are usually formulated so that certain
constants of the solution are mean elements, for example L',G' and H
in the Brouwer theory, instead of initial values. Thus from the known
set of instantaneous elements, the mean elements must be formed by
subtracting out the periodic variations. Since one is considering a first
order theory, the mean elements thus defined will be in error by 0(62).
It can be noted here that a numerical iteration procedure has been applied
to the determining equations (Cain Ref. 15, Arsenault, et al Ref. 11)

which are written as

Q

(1) (*) .,
Q - ¢ S'I‘sq (P',Q) + Sﬁn (r",Q )

(1v-45)

(1) (*)
P="P"+ ¢ 86 (P',Q) + S=, (P",Q")
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Such a procedure can, of course, only remove that second order error
that arises from considering the S functions to be functions of the
instantaneous elements (P,Q), but still cannot account for the truncated
second order terms. Thus from an accuracy point of view, such iteration
procedures are of dubious value, since as shown by Eq., (IV-37) (with 63
terms truncated) the error in XX , Or equivalently ﬂx , will still
grow as ezt from the zero order term. The other variables of either
x" or y" do not present any problem since their rates are either zero
or multiples of ¢, so that an initial value error of 0(e2) will grow
as est giving results consistent with the expected accuracy of the
truncated theory.

With the algorithm suggested by the analysis of subsection IV-B,
the initialization difficulty can be resolved. As noted, for all variables
except the rapidly rotating phase, the use of mean elements defined by
instantaneous value minus the periodic terms (considered as functions of
the instantaneous elements) will lead to no difficulty. The necessary
initialization procedure for Xx is given by Egs. (IV-38), (IV-39)
and (IV-41). The numerical value of n is known exactly from instanta-
neous JC and the remaining terms of (IV-41) have at least an € multiplier.

For the Delaunay variables, one rewrites Eq. (IV-36) with n'" the mean

motion defined by

. 2
SUEE Ay EUR S Kk e S O O (1v-46)
e 2 1 2
. t
so that, with use of energy
2L'3 *k
The explicil expression for W* is identical to F [See

'3 —
Vagners (Ref. 10) where it is given as 2L2 [wz + Fz] 1.
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2
. ~ * -
n =4 =n+ € H_ [g ]R o+ - % kiL‘ 2] + €3 terms (IV-47)

t=0

2
in which in the € terms one replaces the double primed variables with

”~
the instantaneous elements. The new mean motion n is again given by

(IV-38) and (IV-39). All terms appearing the brackets of (IV-47) are

functions already known from the general theory.
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V. THE ASYMMETRIC POTENTIAL FIELD

If one includes the longitude dependent terms (tesseral harmonics)
in the gravitational potential, some modifications to the analysis of

Section IV are necessary. The additional terms in the Hamiltonian are

[¢9) n R n
) =K ZS 25 J ) M - V-1
3Crp = n,m - pn(51n B) cos m(y xn,m) (v-1)
n=2 m=0 )
where J A are constants with J ~ 0(J2)
n,m n,m n,m 2

’

-1
x» = h + tan “(cos i tan u) - ubt

w@ the angular velocity of the Earth
(Time is measured from an instant when the right ascension of Greenwich
is zero.)
In this discussion, KJT will be considered first as a function of the
Delaunay variables JCp (L,G,H,%,g,h - q@t). To remove the explicit time

. . * .
dependence, define a new canonical variable as h = h - uét conjugate

to H with the associated Hamiltonian given by
K = - w H (v-2)
x ®

where # now is the original Hamiltonian including both zonal and tesseral
harmonic effects. Since time is not present explicitly in K, it is a
constant of the motion,
Following the von Zeipel procedure, ''remove" all of the periodic parts
of the extended Hamiltonian K via a suitable generating function,
JC

defined here up to second order (since T is second order in €) so

that the new variables become
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LY %Y o4
(1) ) oS
oS 2 98 T
] —_— — -
£ —£+eaL, + € ST +6L' (V=3)
o8
H=H + -
on*
Equations similar to those above hold for the other variables., Note that
H now contains fluctuations but that these are of second order. As
1) (2) .
before, S and S are chosen to cancel all zonal short-period

terms up to, and including, second order.

the e3 function for the time being)
2 2 9S8 aSs
- 2 T T
T (2) _ L S
K' = 2L'2+€3(31+€(R w@H +L'38-—2- wEBah* JCF

where

3(;1‘=‘:;'C+5z3'1' = Z Z zAkal
k, k @

Thus one is left with (omitting

(v-4)

. *
m(a,e,1)cos(k11’, + kzg + mh~ + phase)

(V=-5)

in which i% includes all terms with k1 # 0, the short-period part of

Jcr , and 5ar gives the daily fluctuations from n* , kl = 0 . Choose
ST so that
L12 asT asT
- + W = - 3C (V-e)
%
L3 Y ® yp T
Strictly speaking, (V-6) should be written as
*
2 oS o8 . oS
- _E§ ?;E + %B-—;g + (W ) z, =
L' oh oh
(vV-7)
~ - *
- 3¢, (L',6,H', 0,g,0%) - B, @",6", g0 )

2 p . .
however, (V-6) is accurate to 0(c”) since Q' is 0(e). Solving by
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ne>
> ol

inspection, with n'

k k m

l
_—_ 1 _
Z 2 Z kon'—m_ sin(k 2" + kyg' + mh" + phase) (V-8)

k2 k1 m

In Eq. (V-8) (as well as (V-6)) one can use the primed variables or
instantaneous variables with 0(€3) error, Clearly, there exist orbits
for which n' is commensurable with q® and hence a particular

(kln' - mué) goes to zero. These are the so-called tesseral resonance
cases and will not be considered here. Introduction of ST in the above

manner leaves

) 3 ¥

_E__ - "o -
K" + € ﬂi + 2R w H e (v-9)

2L'
3 . . . . .
where the ¢ function is now included, and is different from the ¢
function of %' of the axisymmetric problem,
The instantaneous elements may be written as a sum of the "secular"
(double-primed) part and the periodic parts. In particular, with H' a
constant,

T V=10
H=H"+ HS'P + HM.P ( )

From (V-3) and (V-6) it follows that

asT
"o , - ! — V-11
q@H (&9H + g n' = ( )

thus, from (V-8)
e EZZ : ke v
- _ _ A + k + mh” + phase) (V=12)
RY/ Fnmmo Mkowm 054 28 T W P
K m 1 ©

12

Combining (V-12) with (V-5) one obtains
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as k.n'
- n' ~I_ 1~ 1 A cos(k_£' + k_g' + mh*' + hase)
T 352 E, E, z k.n' —mw k_k.m 1 28 p
1 & 12
k k m
(V-13)

|

*
- - A [} 1
25 ES E I - mcos(klﬂ + kzg + mh + phase)
1 @
k k m

12

the constancy of K and ¥" to 2nd order implies (because of (V-11))

that

Q/

S
- 3(’,1, + n' _}’:— = tesseral fluctuation of & =f g%c dt (v-14)

A
o¥C s . .
where St dt denotes a specific second order approximation to the
A
indefinite integral, considering only 4' and h* as time varying.

This may be checked by forming

o
5% - 33% = D D D Ay g Sinlst + ke +m* v phase) (-19)
k2 k1 m 12

If one assumes that, to the order necessary here,

*'
ki£' +wh =~ [kln' + mw@]t (v-16)

then conclusion (V-14) follows.

For discussion of the error bounds, the formalism of Section IV can
be retained to a large extent. Due to the absence of secular tesseral
terms, only the ¢ function of the secular Hamiltonian will change and
hence the bound on that term will be different. It follows then, that
the error bounds on x'', with the exception of 3", are derived in
exactly the same manner as before with different values for the constants

'

Mi . The derivation of an error bound on )" is not as simple as before,

since for the asymmetrical problem the two separate integrals of energy
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and polar component of angular momentum no longer exist,

From the extended Hamiltonian (V-14) one finds

2
o 2 3H R n\ 2 "
-1 H
x":—“—s 1-e%k1L' - ¢ j 5(%) -l-2am| 4+
L' 4G’
(V-17)

+

2 30
+ € 62 - € 3%7

The object again is to obtain an expression for e Q - ¢ % le'_
Ll

accurate up to, and including, second order. Since K 1is a constant

1
)
of the motion
_ - = K" = LU " -
K =1 w@H K 3 w@l—l (v-18)
so that
' =3~ w@(H - H") (V-19)

From general theory for time dependent Hamiltonians

‘;_31;6 = g%c (V-20)
and
3 - %%C dt = constant (v-21)
The constant is related to quantity JC", which is also a constant to

second order as defined by the von Zeipel procedure. In fact, if one
chooses a particular approximate evaluation of the indefinite integral,

as in (V-14), then

e =3 - f gg{c dt (v=-22)
A

Note that as defined by (V-19), 3" is known only to second order with
third order secular terms (from H'). After times of order 1/¢ this

constitutes an error in JC" of second order secular and thus finally to
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first order in 3" if L' is defined through ¥" ., Using the relation

(V-22) avoids this difficulty, since it turns out that the third order

evaluation of the specific integral \/P J¥/O0t dt yields terms that are
A

still third order after t ~ 1/¢, with tesseral resonance situations still

ruled out. This may be verified by considering the first order variations

of the variables in o¥/0t and noting that m #£ 0 in (V-15).

Next, define as before (with 3" defined by (V-22))

-H'u- - - 1] _
oS 3 (V-23)
and the mean motion by

~ 3.3

n = [H/a 1 (V-24)

so that

3

2
~ 3 - 3 2 -2 2 3
QN R A R R - SR+ e3¢F(x",e) (V-25)
. 2 “1 8 1 2 1

and finally, the i" equation

. X 2
11 11
ei-oeto 43 —2 [s(E) 128 |- els, s 3@ 3320
.3 nd G G 2 72 8 "1
L 46
3| oot +
€ [alf + 9 (v-26)

The approximate solution XX is again defined by (V-26) with the @t
functions equal to zero. The argument for obtaining the error estimate
follows as before.

The algorithm fo; computing the correct initial value of the mean
motion n now involves the evaluation of the integral \jﬁ ¥/t at .
This may be done by a suitable expansion on eccentricity?’ one such

evaluation is given in the Appendix.
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VI. NUMERICAL VERIFICATION

Equation (V-26) then provides an algorithm for computing the correct
initial conditions (to the order of accuracy demanded by the general
solution) in the case when the total potential of the Earth is taken into
account. The algorithm includes the (suitable) evaluation of the

03y
indefinite integral b/; ?TE dt . It is of interest to obtain numerical
verification of thﬁageneral accuracy theory of Section V . The explicit
expression for JQ 7§% dt has been derived earlier by Vagners (Ref. 16),
and was subsequently incorporated into the Lockheed Closed Form Orbit
Determination Program (Ref. 17). This program utilizes a complete first
order analytic solution that is equivalent to the extended Brouwer solution.
(The extended Brouwer solution is taken to include J2 short-period,
Jg and general JN long-period, Jn,m medium period (daily) effects and
all second order secular effects not accounting for tesseral resonances
c.f. Giacaglia (Ref. 18), and Garfinkel (Ref. 19).) The Lockheed solution
is due to Small, (Ref. 12), and Vagners, (Ref. 16).

Since the error in the mean anomaly (or equivalently 3'') is directly
related to in-track position error, the simplest test of overall accuracy
is to compare the in-track, cross~track and radial positions as predicted
by the analytic solution and numerical integration of coordinates. Since
the time intervals of interest are of the order 1/¢ , the comparison was
performed over a seven day interval, The test orbit was of 2000 nautical
mile altitude and circular. For such an orbit, not including the results

of Section V (roughly a 200 foot error in the semi-major axis) resulted

in a 200 mile in-track error!. After "tuning' the mean motion with the

+ The comparison study was carried out to determine the effects of inclu-
sion (or omission) of tesseral harmonic short period terms in the semi-
major axis. The energy had already been incorporated in the formulation of
the axisymmetric problem.
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energy, the secular error was decreased to

900 feet, which is an order

decrease as demonstrated by the theory of Section V. The comparison is

shown in Fig. 1, where it can be seen that
secular error are now of the same order of
cross—-track and radial errors are periodic

feet and * 350 feet, respectively, for the
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the periodic errors and the

. . 2
magnitude i.e., O0(¢c ). The
and have amplitudes of * 120

comparison orbit.
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VII. CONCLUDING REMARKS

In the previous sections error bounds were derived specifically for
the Brouwer procedure using the Poincaré/variables. From the general
theory, an algorithm was derived for the correct computation of the
initial conditions for the Brouwer theory. It is then of interest to
note the relevance of the results of this paper to other orbit theories,
and also to present the computation of coordinates from the Poincare/
elements,

Insofar as the first item is concerned, exactly equivalent errors are
to be expected from any complete first order theory provided that care is
taken in establishing the correct mean elements for that theory. A
complete first order theory is defined as one that includes the first
order periodic and second order secular influences of any harmonic. This
distinction is necessary if one wishes to compare theories for prediction
of orbits from a fit to observational data or for prediction from an
initial state vector, i.e. the initial value problem. For example, the
theories of Kyner (Ref. 1), Petty and Breakwell (Ref. 21), including a
time equation carried only to first order secular terms, would give
satisfactory results if applied to orbit prediction from a fit to data.
However, for the initial value problem, these theories would prove
unsatisfactory (giving ¢  errors for time t ~ 1/¢). The latter
difficulty could be remedied if the time equations (or its equivalent)
would be carried out to include second order secular effects and an
energy algorithm used to calibrate the mean motion. The theory of Small
(Ref. 12, Ref. 16) is a complete first order theory and includes the

correct algorithm for computation of initial conditionms.
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With more or less difficulty, any theory appearing in the literature
may be analyzed in a manner analogous to that given in this paper and
equivalent results obtained. In each case, the energy will have to be
used to establish the mean motion (or the constant rate of the fast
variable) to second order, unless complete second order periodic
expressions for the semi-major axis are available. The questions of
error bounds become more difficult if one admits orbits at critical
inclination and/or orbits at resonance with the tesseral harmonics. Such
orbits are excluded from the general class investigated in this report
and remain the topic of future investigations.

The last point to consider is the computation of the coordinates
from the Poincare elements in which most of the theory of this paper was

developed. In terms of conventional orbit elements,

A =M+ w+ Q L =y/upa
1
[2/ra (O -V1-€2) J%cos(w + Q) £

2 Vua Q -\/l—ez)]%sin(w + Q)

LB

[2 Vup (@ - cos i)]% cos {1 (2 Vup (@ - cos i)]%sin Q

1l
]

Ny t2

. 2
where M is the mean anomaly and p = a(l - € ). The remaining elements
were defined in Section III, Eq. (III-1). Known the time t one can

find X,gl,nl,gz,nz and L, then compute

9 3
2
3 €, * T‘11
COS((U"I'Q):— ] - —————
¢ 3 4L
L p
s (VII-2)
2 2
£ £, + 0y |2
in(w+ Q) = — [1- —o~>
€ S1n L% 4L |

An iterative procedure yields A, e cos f, e sin f defined by




-1
tan (e sin f) Vv 1-e2 (e sin f)
A =2 n N n
n 1 +V1-e2 + (e cos f)n 1 + (e cos f)n

(VII-3)

(e cos f)n (e cos(w + Q) cos () + Ah) + (e sin(w + )sin(y, + Ah)

+1

(e sin f)n (e cos(w + ) sin (@ + An) - (e sin(w + YD)cos() + An)

+1
g2 N nz
where V1-e¢2 =1 - —1-5-17—1

So that the radius is given by

5/2 2
R & (11) -~ e) (VII-4)

where %

e2 4 n°
D=y [ L% + [1 - _lZIT_l ] [nl cos(h, + O + 3 sin(, + N ]

and the cartesian coordinates x,y,zZ by

132G - Bt 2

[@L - g? -1 gz) cos () + L) + nzgz sin (, + O]

2D 1T
3/2 2,4
L — 2
y = Bgm [eyn, 05k O ¢ QL g =) - ) sin G D)
1220 - & 2 2 2 2% .
z = 55 (4L - 2, - 2n) - &, - n,) [n, sin( + & - &, cos G+ )]
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APPENDIX

X
T
icit Eval i £
. Explicit Evaluation o L/ﬂ —3;— dt
A
For the evaluation of the initial value problem, the indefinite
aJCT
integral d[‘-jg—— dt must be evaluated or, equivalently, the generating
A t
function ST must be found. It will be assumed here that the integrand
is given by (V-15) and the integration will be carried out in conventional
variables.
The following expressions prove useful:

v

m
2n-2()" n n-m-2 . n-m-2
P:(sin B) = 22%—9 ?é:ﬁ:EE%T <§) (- l)C sin i S sin 7 g ¢ (A-1)
. '
2" n. t=0
where
n-m
= for n-m even
v -
- n-m-1
> for n-m odd
* n m-s s S :
cos m(y, - 1 )y = }S (m) cos u sin u cos 1 (. )5
n,m S m
’ o cos B
s=
(A-2)
* .
[Yl cos m(h* - ") + T, sin m(n* - 2%
where
s/2 if s 1is even; T, = 1, T, = 0
£ =
s + 1 . . . _ _
> if s 1is odd; Yl = 0, Y2 1

X* =a + ) with « the right ascension of
o n,m (o}

Greenwich at a base time to .
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n+l

1 z <n+1> e’ 1
n+l P &X1 - e2 p+l an+1

Mo

p - - -
(q) cos(p - 2q) (u - w) (A-3)

* p=0 ) q=0
and j Kk )
. J k j) (k (- 1 . - -
sin“u cos'u = 25 jg ( - ) g —;EIE— [61 cos(j + k = 2¢ - 2d)u
c=0 d=0
+ 5, sin(j + k = 2¢c - 2d)u] (A-4)

where

j+c+j/2 if j is even; 5, =1, 5, = 0

4 =
i+ o+ 1—%;1- if j is odd; & =0, &, =1

JC
At this point, the assumptions under which k/\ g—- dt will be
A t
integrated may be stated. The inclination angle i and the eccentricity
e will be taken as constants. Since no appreciable difficulty is incurred

thereby, the following will be adopted
w=w + wu
o

h* =0 + Qu-=-owt
[e] )

with s (R 2 ) (a-5)
w' = 3 € - (2 - 5/2 sin“i)

R@ 2
B = - =¢ (-—-) cos i
P

The last item is the central angle-time relationship. Since the integrand

N

is (essentially) now a function of u, one would prefer to integrate

with respect to u. To the first approximation

du = n dt + O(eez) (A-6)
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so that the contribution of the Jn m term is given by
Hl

n-m-2{+s m-s
E sin u cos u [r, sin n* - 1*) - v, cos m(* - %] x
n,m 1 2

cos(p - 2¢)(u -~ w) du

with¥

n Vv n+l P m

Fon = T s 2 0 2 O wenanr (3 (%)

(=0 p=0 q=0 s=0

(A-7)
p n—m—zg

(2)( 2) (- 1) g 2P (1 f ez)p+l X cos®i sin i

~ *
or with h=h - X* ,

*

E cos(p - 29) (u - W[y, sin mh - ¥, cos mh][®, cos(j + k - 2¢ - 2d)u
n,m 1 2 1

+ 62 sin(j + k - 2¢ = 2d)u]du

with J k
* -1~ 1)
E = E
n,m z z ) ) 2J+k
c=0 d=0
then let
= - -2
B wo(p Q)
B, = (1 - w)p - 29
=j +k=-2c-2d
B2 J c
*
B3 = m(SZ0 - )
%8
— - - ) ——
B4 = m( Qo+ ﬁ)

so that the integrand becomes

¥ If one prefers, the F and G functions of Kaula, Ref. 22, may be

used instead.
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f cos(BO + Blu)[5l cos B2u + 62 sin B u][Y1 sin(B3 + B4u) -

2
(A-8)
Yzcos(B3 + B4u)]du
The following non—-zero combinations arise in the above integral:
= B B i
I1 L/jcos(B0 + 1u) cos Byu 51n(B3 + B4u)du
- = B
12 U/\ cos(BO + Blu) cos B,u cos(B3 + B4u)du
(A-9)
= B B in B i
I3 JP cos ( o + 1u) sin 2u 51n(B3 + B4u)du
I4 = - k/\ cos(Bo + Blu) sin Bzu cos(Bz + B4u)du

which can all be evaluated explicitly to give

1 1 1
L =315 58 cos[BS—Bo+(B2+B4-B1)u] t T TR IR cos[Bo—B3+(B2+Bl-B4)u]
1 4 2 1 4 2
+ S — cos{B_4+B +(B_+B -B_)u] - ———l————-cos[B +B +(B. 4B +B_)u]
B_-B -B 30 "1 4 2 B +B_+B 370 "2 41
2 41 4771 2
1= -2l 1 ¢in[B -B_+(B_-B +B Ju] - =——=—— sin[B_~B_+(By+B,~B u]
2~ 4| B,-B_+B o 3 2741 B_-B -B 37072741
2 41 174 2
- 2 sin[B+B +(B+B,-B_Ju] -~ ———— sin[B_+B +(B +B_+B,)u]
B -B -B 370 "1 42 B +B_+B 3770 "1 2 4
2 471 471 2
I, =3 { —2— sin[B -B +(B,+B,~B )u] + —2 _ sin[B -B_+(B,+B_-B,)u]
3 4| B,-B -B 370 2 41 B_-B +B o 3 21 4
174 2 2 471
1 sin[B +B_+(B_+B -B_Ju} - —I sin[B_+B +(B_ +B +B )u]
B_-B -B o 3 71 4 2 B +B_+B 370 "2 4 1
2 4 1 471 2
I =- iy 1 cos[B -B_+(B_+B.-B Ju] + —1 cos[B _+B_+(B_+B ~B_Jul+
4 4 B4-B1—B2 o 3 2 1 4 B4-BZ+B1 o 3 1 4 2
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1
+ §—:§;:§— cos[BS—BO+(B2+B4-Bl)u] -

) X cos[BS+Bo+(Bz+B4+Bl)u]

S S
B4+Bl+B2

In the expressions of Ref. 16, it was assumed that i,w, and r
were constants and in the test case the orbit was circular. The exten-

sions of the above development cause no difficulty other than increasing

the number of terms. However, any improvement of accuracy for non-zero

eccentricity orbits is difficult to assess due to the approximation of
2
Eq. (A-6). 1In order to define the error remaining as of order eze

one must include the e terms in (A-6).
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